Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Aminophenylsulfur pentafluoride

Eva Lina Nava, Adolf Jesih and Evgeny Goreshnik*

Department of Inorganic Chemistry and Technology, Jozef Stefan Institute, Jamova 39 1000 Ljubljana, Slovenia
Correspondence e-mail: evgeny.goreshnik@ijs.si
Received 14 December 2007; accepted 3 January 2008
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.031 ; w R$ factor $=0.066 ;$ data-to-parameter ratio $=14.0$.

In the title compound, $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NS}$, the environment of the S atom is roughly octahedral. The axial $\mathrm{F}-\mathrm{S}$ bond appears slightly elongated with respect to the four equatorial $\mathrm{F}-\mathrm{S}$ bonds. Equatorial F atoms are staggered with respect to the benzene ring. The N atom is displaced from the benzene plane by 0.154 (4) \AA. The $\mathrm{F}-\mathrm{S}-\mathrm{C}-\mathrm{C}$ torsion angles differ greatly from the values observed in the related structure of 4 acetamidophenylsulfur pentafluoride. The packing is stabilized by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ contacts.

Related literature

For related literature, see: Raasch (1963); Bowden et al. (2000); Sheppard $(1960,1962)$.

Experimental

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NS}$
$M_{r}=219.18$
Orthorhombic, Pbca
$a=16.0369$ (13) \AA
$b=5.7514(5) \AA$
$c=17.5305(15) \AA$
$V=1616.9(2) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.44 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
$0.1 \times 0.08 \times 0.05 \mathrm{~mm}$

Data collection
Rigaku Mercury CCD
diffractometer
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.959, T_{\text {max }}=0.981$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031 \quad 118$ parameters
$w R\left(F^{2}\right)=0.065 \quad$ H-atom parameters constrained
$S=0.58$
1650 reflections

6533 measured reflections 1650 independent reflections 633 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.051$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 12 \cdots 5^{\mathrm{i}}$	0.89	2.59	3.38	148

Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

The authors gratefully acknowledge the Ministry of Science and Education of Slovenia and the European Scientific Foundation (COST 527 project).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2303).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bowden, R. D., Comina, P. J., Greenhall, M. P., Kariuki, B. M., Loveday, A. \& Philip, D. (2000). Tetrahedron, 56, 3399-3408.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Raasch, M. S. (1963). US Patent 3073861.
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheppard, W. A. (1960). J. Am. Chem. Soc. 82, 4751-4752.
Sheppard, W. A. (1962). J. Am. Chem. Soc. 84, 3064-3072.

supplementary materials

4-Aminophenylsulfur pentafluoride

E. L. Nava, A. Jesih and E. Goreshnik

Comment

Phenylsulfur pentafluorides were first synthesized (Sheppard, 1960) by the fluorination of aromatic disulfides with silver difluoride. Some SF_{5}-benzene derivatives were patented as plant regulants, herbicides and bactericides (Raasch, 1963).

In the title compound, the environment of sulfur atom appears to be approximately octahedral (Fig. 1) with the $\mathrm{C}-\mathrm{S}$ bond being 1.786 (3) \AA, four equatorial S - F bonds of 1.577 (2) - 1.586 (2) \AA and noticeably elongated to 1.600 (2) \AA axial $\mathrm{S}-\mathrm{F}$ bond. Equatorial F atoms are declined slightly away from the benzene ring resulting in the medium value of Feq S - Fax angle of 86.9°. Similar staggered conformation was observed earlier in the structure of 4-acetamidophenylsulfur pentafluoride (Bowden et al., 2000). The F - S - C - C dihedral angles values of 43 and 47° differ from observed in above mentioned structure of 4-acetamidophenylsulfur pentafluoride 30 and 60° respectively. The packing is stabilized by weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ contacts.

Experimental

Sample of 4-aminohenylsulfur pentafluoride was prepared in three steps according to original procedure (Sheppard, 1962). Bis-(4-nitrophenyl)-disulfide was fluorinated with silver difluoride in CFC113 solvent and the product 4-nitrophenylsulfurpentafluoride was obtained in 10.0% yield and was consequently purified by preparative HPLC. 95% pure 4-nitrophenylsulfur pentafluoride was hydrogenated with hydrogen gas in acidic (HCL) ethanol solution, PtO_{2} was used as a catalyst. The 4-aminophenylsulfur pentafluoride hydrochloride obtained was reacted with sodium bicarbonate water solution and the product 4-aminophenylsulfur pentafluoride was extracted with diethyl ether and recrystallized from pentane. 4Aminophenylsulfur pentafluoride crystallizes as white needles.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic) with $U_{\text {iso }}(\mathrm{H})$ $=1.2 U_{\mathrm{eq}}(\mathrm{C})$. H atoms of amino group were located in difference Fourier maps and included in the subsequent refinement using restraints $(\mathrm{N}-\mathrm{H}=0.89(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}=1.57(2) \AA)$ with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N})$. In the last stage of refinement, they were treated as riding on their parent N atom.

Figures

Fig. 1. Molecular view of I with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphers of arbitrary radii.

supplementary materials

4-Aminophenylsulfur pentafluoride

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~F}_{5} \mathrm{NS}$
$M_{r}=219.18$
Orthorhombic, $P b c a$
Hall symbol: -P 2ac 2ab
$a=16.0369$ (13) \AA
$b=5.7514(5) \AA$
$c=17.5305(15) \AA$
$V=1616.9(2) \AA^{3}$
$Z=8$

$$
\begin{aligned}
& F_{000}=880 \\
& D_{\mathrm{x}}=1.801 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \lambda=0.71069 \AA \\
& \text { Cell parameters from } 71 \text { reflections } \\
& \theta=1.2-29.1^{\circ} \\
& \mu=0.44 \mathrm{~mm}^{-1} \\
& T=200 \mathrm{~K} \\
& \text { Chunk, colourless } \\
& 0.1 \times 0.08 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Data collection

Mercury CCD (2×2 bin mode) diffractometer
dtprofit.ref scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.959, T_{\text {max }}=0.981$
6533 measured reflections
1650 independent reflections

$$
R_{\mathrm{int}}=0.051
$$

$\theta_{\text {max }}=26.4^{\circ}$
$\theta_{\min }=2.3^{\circ}$
$h=0 \rightarrow 20$
$k=0 \rightarrow 7$

633 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.065$
$S=0.58$
1650 reflections
118 parameters
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)\right]$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.26$ e \AA^{-3}
$\Delta \rho_{\min }=-0.22$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.89753(5)$	$0.08028(15)$	$0.09772(6)$	$0.0401(2)$
F1	$0.87251(10)$	$0.3449(3)$	$0.10747(12)$	$0.0606(6)$
F2	$0.80397(8)$	$0.0204(3)$	$0.07597(11)$	$0.0597(6)$
F3	$0.92307(9)$	$-0.1787(3)$	$0.07811(11)$	$0.0529(6)$
F4	$0.99217(9)$	$0.1448(3)$	$0.10997(12)$	$0.0566(6)$
F5	$0.91119(10)$	$0.1370(3)$	$0.00922(11)$	$0.0608(6)$
C1	$0.84866(18)$	$-0.0742(6)$	$0.3495(2)$	$0.0417(9)$
C2	$0.89380(16)$	$0.1215(6)$	$0.3276(2)$	$0.0424(9)$
H2	0.9136	0.2228	0.3648	0.051^{*}
C3	$0.90968(17)$	$0.1681(5)$	$0.2514(2)$	$0.0391(9)$
H3	0.9394	0.3005	0.2377	0.047^{*}
C4	$0.88150(16)$	$0.0181(5)$	$0.19639(18)$	$0.0303(8)$
C5	$0.83895(16)$	$-0.1814(5)$	$0.2167(2)$	$0.0364(8)$
H5	0.8205	-0.2842	0.1794	0.044^{*}
C6	$0.82413(17)$	$-0.2267(5)$	$0.2925(2)$	$0.0415(9)$
H6	0.7969	-0.3635	0.3059	0.050^{*}
N1	$0.82569(15)$	$-0.1078(5)$	$0.42463(17)$	$0.0618(9)$
H11	0.8081	-0.2512	0.4320	0.074^{*}
H12	0.8522	-0.0289	0.4603	0.074^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0450(5)$	$0.0386(5)$	$0.0367(6)$	$0.0025(4)$	$0.0026(5)$	$-0.0008(5)$
F1	$0.0980(14)$	$0.0353(11)$	$0.0486(15)$	$0.0151(10)$	$0.0129(12)$	$0.0070(11)$
F2	$0.0412(10)$	$0.0926(15)$	$0.0453(15)$	$-0.0039(9)$	$-0.0090(10)$	$-0.0005(12)$
F3	$0.0731(12)$	$0.0369(11)$	$0.0487(15)$	$0.0077(9)$	$0.0085(11)$	$-0.0127(10)$
F4	$0.0432(10)$	$0.0714(13)$	$0.0552(16)$	$-0.0147(9)$	$0.0108(10)$	$-0.0010(12)$
F5	$0.0819(13)$	$0.0706(14)$	$0.0300(13)$	$0.0071(10)$	$0.0147(11)$	$0.0067(11)$
C1	$0.040(2)$	$0.053(2)$	$0.032(2)$	$0.0120(17)$	$0.0036(18)$	$0.009(2)$
C2	$0.0417(19)$	$0.047(2)$	$0.038(2)$	$-0.0027(17)$	$-0.0073(18)$	$-0.0070(19)$
C3	$0.0419(19)$	$0.037(2)$	$0.038(2)$	$-0.0076(15)$	$0.0024(18)$	$-0.0009(19)$
C4	$0.0336(17)$	$0.0276(18)$	$0.030(2)$	$0.0041(14)$	$0.0002(15)$	$-0.0005(16)$
C5	$0.0362(18)$	$0.0312(19)$	$0.042(2)$	$-0.0041(15)$	$0.0018(17)$	$-0.0071(19)$
C6	$0.0424(19)$	$0.033(2)$	$0.049(3)$	$-0.0003(16)$	$0.0081(19)$	$0.004(2)$
N1	$0.0770(19)$	$0.068(2)$	$0.040(2)$	$-0.0009(16)$	$0.0052(17)$	$0.0081(19)$

Geometric parameters ($A,{ }^{\circ}$)

S1-F4	$1.5771(16)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
S1-F3	$1.5826(17)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.370(4)$
S1-F1	$1.5832(17)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9300
S1-F2	$1.5860(16)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.382(4)$
S1-F5	$1.600(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.375(4)$
S1-C4	$1.785(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300

supplementary materials

C1-N1	1.381 (4)
C1-C6	1.386 (4)
C1-C2	1.392 (4)
C2-C3	1.386 (4)
F4-S1-F3	90.11 (9)
F4-S1-F1	90.18 (10)
F3-S1-F1	173.62 (13)
F4-S1-F2	173.86 (13)
F3-S1-F2	89.33 (10)
F1-S1-F2	89.70 (10)
F4-S1-F5	87.26 (10)
F3-S1-F5	86.90 (11)
F1-S1-F5	86.75 (11)
F2-S1-F5	86.60 (11)
F4-S1-C4	93.09 (12)
F3-S1-C4	93.40 (12)
F1-S1-C4	92.95 (13)
F2-S1-C4	93.05 (12)
F5-S1-C4	179.54 (13)
N1-C1-C6	121.5 (3)
N1-C1-C2	121.0 (4)
C6-C1-C2	117.4 (3)

$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{~N} 1-\mathrm{H} 11$	0.8813
$\mathrm{~N} 1-\mathrm{H} 12$	0.8823
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.2(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.4
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$119.7(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.2(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{S} 1$	$120.6(2)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{S} 1$	$119.2(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.5(3)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.2
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.2
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$121.8(3)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.1
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.1
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 11$	110.9
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 12$	118.5
$\mathrm{H} 11-\mathrm{N} 1-\mathrm{H} 12$	122.1

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 12 \cdots 5^{\mathrm{i}}$	0.89	2.59	3.38	148

Symmetry codes: (i) $x,-y+1 / 2, z+1 / 2$.

Fig. 1

